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calcium and magnesium in quantities less than one part per 
million each. The chemical analyses of the formed samples 
showed that they were within 5% of ideal. The standard 
deviation in the measured X-ray intensity was about + 5%. 
The procedure of taking the fractional intensities (Sub- 
ramanyam, 1971) obviates the necessity for absorption and 
temperature factor corrections. The measured value of the 
canted-antiferromagnetic susceptibility of ti-Fe20 3 is in 
excellent agreement with the reports of Bradley (1971) and 
others. The maximum error in the above measurement was 
+5% with each of the input admittances contributing 
+ 2.5 % to the overall error. 

The present results do not necessarily show that the 
removal of (NiO) x from the spinel structure of NiFe20 4 
causes precipitation of a-Fe20 3. However, it may be 
reasonable to claim that for specimens having compositions 
x ~_ 1.0 and x ~_ 0.0, traces of (~-Fe20 3 and Fe304 
respectively could be present (Neel, 1949). 

To conclude, the gradual degradation of the cubic spinel 

phase in polycrystalline NixFe204 (x = 1.0 to 0.1) has 
been doubly confirmed by two independent methods of 
measurement and further, the sharp ferrimagnetic-antiferro- 
magnetic transition occurring at x = 0.1 in the trans- 
formation indicates a change in crystal symmetry. 
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Abstract 

Multiple-scattering processes are identified as a source of 
error in diffuse-scattering measurements on solid solutions. 
Of the various methods used to account for such effects, a 
multiple-regression analysis using reduced weights for 
measurements having maximum interference appears to be 
the most satisfactory. 

It is well known that when diffraction measurements are 
made on single crystals a second reciprocal-lattice point may 
simultaneously intersect the Ewald sphere. The first conse- 
quence of this is that the scattering from the second lattice 
point will attenuate the incoming beam, leading to a loss in 
intensity of the point under study. Secondly, the diffracted 
beam from this secondary point will also satisfy the Bragg 
condition for diffraction from a third reciprocal-lattice point, 
which will return intensity into the primary diffracted beam. 
These two effects are collectively known as the Renninger 
effect after their discoverer (Renninger, 1937). 

Even before Renninger's work the importance of multiple 
scattering in studies of Compton scattering was pointed out 
by DuMond (1930). The methods for adequately accounting 
for this effect were developed more recently, and, following 
Halonen, Epstein, Tanner & Williams (1976), the problem 
appears to be reasonably well solved, although the methods 
are not particularly simple to apply. It has been recognized 
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that multiple scattering is also important in the scattering 
from amorphous substances, where the effect is primarily 
limited to a 20 dependence. Specifically, for silica the double 
scattering accounts for 8% of the intensity (Warren & 
Mozzi, 1966). The effect has also been observed (Sparks & 
Epperson, 1978) in the thermal diffuse scattering of graphite. 
In measurements of Compton scattering up to 15% of the 
photons have been doubly scattered (Halonen et al., 1976). 

To the author's knowledge, multiple-scattering processes 
in diffuse-scattering measurements from alloys have not been 
definitely identified. It was suggested (Williams, 1974) that 
part of the error in the intensity for a copper-aluminum alloy 
arose from this effect. Here I demonstrate that this 
suggestion is correct and give methods of eliminating or 
correcting for the effect. 

Fig. 1 shows the geometry for measuring the diffuse 
scattering from point hkl, where S o and S are the primary 
and diffracted beam vectors. The circles represent the 
intersection of the two Ewald spheres with the So-S plane. If 
a reciprocal-lattice point, HKL, intersects the left sphere, 
then there will be an additional attenuation of the incoming 
beam due to Bragg diffraction. Similarly, the diffracted beam 
would be reduced in intensity if a reciprocal-lattice point 
intersected the right sphere. This loss of intensity is a form of 
extinction. As the sample is rotated around the hkl direction 
a whole set of reciprocal-lattice points would pass through 
these spheres. 

A second part of the effect is that some intensity is 
returned to the diffracted beam by the diffuse scattering by 
the point h -  H, k - K ,  l - -L  of the intensity diffracted by 
point HKL. There is a second analogous contribution from 
the point H- -  h, K - k, L -- l, where the Bragg scattering of 
the diffuse intensity occurs. 
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In Fig. 2 I have plotted the positions where the various 
low-order Bragg diffractions take place for the l = 0 plane. 
Because these observations are taken in a mirror plane both 
the incident beam and the diffusely scattered beam are simul- 
taneously attenuated by the same Bragg diffraction to double 
the effect. The strength of the Bragg diffraction decreases 
strongly with higher-index reflections, and I have indicated 
this by the line widths. 

Three factors must be considered in comparing this figure 
with Fig. 3, which gives the observed intensity less the 
calculated intensity for a Cu-AI alloy (Williams, 1974). 
Intensity will be reduced along the lines in Fig. 2 by the 
competitive Bragg diffraction. Secondly, multiple scattering 
will return intensity of a distinctly different character to these 
regions. Thirdly, the calculated intensity will fit the observed 
intensity within the limitations imposed by the symmetry of 
the mathematical formulation. Thus, one can only expect 
that the intensity differences will tend to be larger along these 
lines but will not show a net positive or negative tendency. 
Qualitatively, the differences do appear to be larger in the 
vicinity of these lines in support of my earlier conclusion. As 
an example, the largest differences between 220 and 400 
coincide almost exactly with positions where 220 diffraction 
occurs. The differences near the reciprocal-lattice points are 
also associated with the problem of resolution and need not 
be the sole result of multiple scattering. 

While the correction for multiple scattering in these data is 
desirable, it would not be expected to result in substantially 
different parameters because the original error estimates are 
rather small. However, any correction that reduces the 
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Fig. 1. Diffraction geometry. When a reciprocal-lattice point HK£ 

intersects the Ewald sphere the intensity will be reduced by the 
Bragg diffraction. This diffracted beam may also scatter diffuse 
intensity back into the primary scattering direction. 
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Fig. 2. The positions in the hkO plane where Bragg diffraction by 
the indicated reflections takes place. This figure applies to the 
measurements for the Cu-AI alloy, but the frequency of such 
diffraction is characteristic of all such measurements. 

differences in intensity would reduce the error estimates by a 
similar amount. It is clear from Fig. 2 that such errors will 
affect the higher-order tt's more than the lower ones. This 
would account for the residual error of 0.005, which appears 
to be present in a's for the higher-order shells (Williams, 
1978). 

To a first approximation the fractional loss in the diffuse 
intensity for a given Bragg reflection would be independent of 
8 but the amount of intensity returned to the diffracted beam 
should increase with 8. The increase results because as hkl 
becomes longer the vector H - h ,  K - k ,  L - l  becomes 
shorter and thus represents regions of stronger diffuse 
scattering. The observed intensity for the copper-aluminum 
data showed a definite tendency to be more positive than the 
calculated intensity for the highest values of 0 which may 
have been a result of this effect. 

If one is using the Boric & Sparks (1964) separation 
method for the data reduction, the only way in which this 
problem could be handled would appear to be the graphical 
examination of the data in the regions where the multiple 
scattering is strongest and making those adjustments that 
seem in order. 

If one rotates a sample around its normal when this 
coincides with the hkl vector, then the presence of multiple 
scattering would be observed as intensity fluctuations. This is 
the method used (Cole, Chambers & Dunn, 1962) for 
studying the Renninger effect. Data obtained with the 
reciprocal-lattice points furthest from the spheres of reflec- 
tion would be the most reliable. The attractiveness of this 
method is that one can get a direct measure of the magnitude 
of the effect. An adequate mapping of the diffuse intensity 
would require ten or so samples. Even if one were using only 
a single sample, an examination by this method is advisable, 
for this would indicate the importance of such corrections. 

In using a multiple-regression analysis it is highly desirable 
to obtain data over a large volume in reciprocal space 
(Williams, 1972, 1974). By using lower weights for obser- 
vations that are affected by multiple scattering one may 
proceed with the data analysis without any additional 
complications. Further, by examining how well the data are 
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Fig. 3. The difference between the observed and the calculated 
intensity for a Cu-A! alloy. The data-reduction method is such 
that the positions of maximum Bragg scattering should corres- 
pond approximately to differences of larger magnitude, regardless 
of sign. 
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fitted versus the degree of weighting one can evaluate the 
importance of multiple scattering and its effect on the 
calculated parameters. Also, one can determine the relative 
reliability of data from different positions in reciprocal space. 
Because this method is so simple and powerful it is 
unquestionably the preferred approach. 

It is presumably possible to treat the problem analogously 
to its treatment for Compton scattering although it is much 
more complex. A considerable computational effort would 
also be required (Halonen et al., 1976). Our conclusion is 
that this approach is so difficult and subject to such 
uncertainties that it surely should be avoided. It should be 
pointed out that in certain cases, as for Compton scattering, 
multiple scattering cannot be eliminated so corrections are 
necessary; whereas, for diffuse scattering from crystalline 
solids, the data that are used need not be degraded by this 
effect. 

In summary, I have shown that multiple-scattering 
processes are important in diffuse-scattering measurements. 
Data reduction by a multiple-regression analysis can handle 
the problem most satisfactorily. 
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Abstract 

Simple models for the thermal expansion of erbium, and for 
deducing the magnetic energy from the specific heat, are 
shown to give an approximate account of the facts. Values 
are given for the energy of magnetic ordering and the 
magnetic entropy. 

1. Introduction 

The heavy rare-earth metal erbium exhibits a rather complex 
magnetic ordering at low temperatures, which has a pro- 
nounced effect on the specific heat. Below a Nbel point at 85 
K the moments vary sinusoidally along the c axis, and below 
about 53 K the moments in the basal plane develop a 
helicoidal ordering. Er is ferromagnetic below 20 K, the 
helical arrangement of the spins in the basal plane being 
retained. 

We present here calculations for erbium using the nearest- 
neighbour central-force model proposed by Srinivasan & 
Ramji Rao (1965), which has earlier been employed to study 
the lattice dynamics and thermal expansion of erbium (Ramji 
Rao & Ramanand, 1977). We compute the variation of the 
lattice parameters with pressure and find good agreement 
with experiment. We then determine the lattice heat capacity 
using the central-force model. Subtracting this, and an 
estimate of the electronic heat capacity, from the specific 
heat as determined experimentally we obtain a magnetic con- 
tribution. This in turn has been used to calculate the total 

0567- 7394/79/030505-03 $01.00 

energy of magnetic ordering, the magnetic contribution to 
the change in entropy due to ordering and an effective 
exchange parameter of Er. 

2. Effect of hydrostatic pressure on the lattice parameters 
and volume of erbium 

We have followed the method suggested by Thurston (1967) 
who has derived an expression for the change in the lattice 
parameter with application of pressure. The usual expression 
obtained by truncating the power series after the quadratic 
term is not suitable for extrapolation beyond a few tens of 
kilobars. 

Thurston's extrapolation formula for the principal 
stretches ;I. i (i = 1, 2, 3), which is consistent with a linear 
pressure dependence of the bulk modulus, is 

X t = (B/Bo)-S2oY,o/~S'o)2 exp [(a I + BoYto/B~)P]. (2.1) 

For a uniaxial crystal ;I.~ = 22 = 2j and X 3 = 2,, and 
equation (2.1) can be written for the two cases: 

a/a o = 2± = (B/Bo) -8gy~°/fB'°)' exp [(a± + BoY±o/B~)P], 

C/Co = ~.u = (B/Bo) -8~y °1c8'~2 exp [(a, + BoYllo/B'o)P]. (2.2) 

a/ao and c/c o are the compression ratios of the lattice 
parameters, B is the bulk modulus at pressure P, B 0 and 
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